![]() Prof. Dr. Richard DronskowskiChair of Solid-state and Quantum Chemistry![]() ResearchIn a nutshell, the Dronskowski group is specializing in the fields of synthetic and quantum-theoretical solid-state chemistry, bordering with materials science, solid-state and theoretical physics, crystallography, as well as quantum and computational chemistry. In detail, we are synthesizing novel, sometimes extremely sensitive, compounds and elucidate their compositions and crystal structures by means of X-ray and neutron diffractional techniques. The characterization of their physical properties, that is, electronic transport and magnetism, also plays a very important role.
Interestingly, no cyanamide/carbodiimide phase of the magnetic transition metals has ever been reported which involves a non-d10 electron count. This is particularly puzzling because, as we suspect, a couple of groups have been trying to reach that goal.
With the advent of very fast (parallel) computer architectures, density-functional theory-based molecular-dynamics simulations for molecules and solids are becoming increasingly popular, both on the pico- and nanometer length scales. For huge systems, we think that alternative parameterizations (which require a crystal-chemical understanding) may - sometimes - serve as cheaper (that is, much faster) alternatives [18]. In addition, order-N scaling electronic-structure methods using super-localized atomic orbitals are another alternative although their usefulness differs drastically from system to system. Also, entirely new approaches are needed to more systematically deal with periodic systems in which electron correlation plays a major, if not dominating, role such that density-functional theory appears as an invalid tool [19]. Upon searching for intermetallic compounds in the realm of anticorrosive alloys (binary system Sn/Zn), however, we have found a promising combination of density-functional theory on the one side and classic thermochemical approaches [20]. Here, too, the research is motivated by the paramount importance of corrosion protection; in Germany alone, corrosion destroys on the order of Euro 50 billion (!) each year; that's a lot of money. This kind of metal-oriented research will also become more important in the near future, in particular for high-performance steel-related activities. Last, let's mention a few all-time research favorites of this group which we consider a useful supplement of a modern solid-state chemical laboratory. By pure curiosity, we have always been interested in the crystal chemistry of small high-energy molecules. As only one example, one might mention the crystal-structure determination and the study of the phase transformation of solid S4N4 in the proximity of its detonation temperature [21]. On the other side, metastable (albeit non-explosive) extended solids, for example binary indium halides such as In4Br7, have contributed to our ability to solve very complex structures from powder data and understand second-order Jahn-Teller distortions close to absolute zero temperature; such studies demand high-resolution neutron powder data [22]. Clearly, these "finger exercises" have no direct relationship with economically important materials but they provide and guarantee the skill of the coworkers to competently deal with any material. If one can handle and characterize air- and light-sensitive explosives at any temperature, the structural characterization of ionic liquids is not too difficult [23], and the characterization of oxidic ferroelectrics seems almost trivial [24]. There must always be a little room for unconventional, out-of-the-ordinary ideas. References [1] First-Principles Studies of Extended Nitride Materials, P. Kroll, B. Eck, R. Dronskowski, Adv. Mater. 2000, 12, 307. [2] Predicting new ferromagnetic nitrides from electronic structure theory: IrFe3N and RhFe3N, J. von Appen, R. Dronskowski, Angew. Chem. Int. Ed. 2005, 43, 1205. [3] Synthesis, crystal structure and magnetic properties of the semi-hard itinerant ferromagnet RhFe3N, A. Houben, P. Müller, J. von Appen, H. Lueken, R. Niewa, R. Dronskowski, Angew. Chem. Int. Ed. 2005, 44, 7212. [4] Mysterious Platinum Nitride, J. von Appen, M.-W. Lumey, R. Dronskowski, Angew. Chem. Int. Ed. 2006, 45, 4365. [5] Composition and formation mechanism of zirconium oxynitride films produced by reactive direct current magnetron sputtering, J. M. Ngaruiya, O. Kappertz, C. Liesch, P. Müller, R. Dronskowski, M. Wuttig, Phys. Stat. Sol. A 2004, 201, 967. [6] Quantum-Chemical Studies on the Geometric and Electronic Structures of Bertholloide Cobalt Oxynitrides, M.-W. Lumey, R. Dronskowski, Adv. Funct. Mat. 2004, 14, 371. [7] First-Principles Electronic Structure, Chemical Bonding and High-Pressure Phase Prediction of the Oxynitrides of Vanadium, Niobium and Tantalum, M-W. Lumey, R. Dronskowski, Z. Anorg. Allg. Chem. 2005, 631, 887. [8] The Orbital Origins of Magnetism: From Atoms to Molecules to Ferromagnetic Alloys, G. A. Landrum, R. Dronskowski, Angew. Chem. Int. Ed. 2000, 39, 1560. [9] Chemically Tuning between Ferromagnetism and Antiferromagnetism by Combining Theory and Synthesis in Iron/Manganese Rhodium Borides, R. Dronskowski, K. Korczak, H. Lueken, W. Jung, Angew. Chem. Int. Ed. 2002, 41, 2528. [10] Synthesis, Structure Determination, and Quantum-Chemical Characterization of an Alternate HgNCN Polymorph, X. Liu, P. Müller, P. Kroll, R. Dronskowski, Inorg. Chem. 2002, 41, 4259. [11] Formation of Complex Three- and One-Dimensional Interpenetrating Networks within Carbodiimide Chemistry: NCN2--Coordinated Rare-Earth-Metal Tetrahedra and Condensed Alkali-Metal Iodide Octahedra in Two Novel Lithium Europium Carbodiimide Iodides, LiEu2(NCN)I3 and LiEu4(NCN)3I3, W. Liao, C. Hu, R. K. Kremer, R. Dronskowski, Inorg. Chem. 2004, 43, 5884. [12] Eu8(NCN)5-dI6+2d (d = 0.05): a Novel Rare-Earth Carbodiimide Iodide containing Oligomeric Tritetrahedral Eu8 Clusters, W. Liao, B. P. T. Fokwa, R. Dronskowski, Chem. Commun. 2005, 3612. [13] A theoretical study on the existence and structures of some hypothetical first-row transition-metal M(NCN) compounds, M. Launay, R. Dronskowski, Z. Naturforsch. B 2005, 60, 701. [14] Synthesis, Crystal Structure and Properties of MnNCN, the first Carbodiimide of a Magnetic Transition Metal, X. Liu, M. Krott, P. Müller, C. Hu, H. Lueken, R. Dronskowski, Inorg. Chem. 2004, 44, 3001. [15] A Novel Method for Synthesizing Crystalline Copper Carbodiimide, CuNCN. Structure Determination by X-ray Rietveld Refinement, X. Liu, M. A. Wankeu, H. Lueken, R. Dronskowski, Z. Naturforsch. B 2005, 60, 593. [16] The amount of calcium-deficient hexagonal hydroxyapatite in aortic valves is influenced by gender and associated with genetic polymorphisms in patients with severe calcific aortic stenosis, J. R. Ortlepp, F. Schmitz, V. Mevissen, S. Weiss, J. Huster, R. Dronskowski, G. Langebartels, R. Autschbach, K. Zerres, C. Weber, P. Hanrath, R. Hoffmann, Eur. Heart. J. 2004, 25, 514. [17] Chemical analyses and X-ray diffraction investigations of human hydroxyapatite minerals from aortic valve stenoses, L. Stork, P. Müller, R. Dronskowski, J. R. Ortlepp, Z. Kristallogr. 2005, 220, 201. [18] Atomistic Simulations of Solid-State Materials based on Crystal-Chemical Potential Concepts: Basic Ideas and Implementation; B. Eck, R. Dronskowski, J. Alloys Compd. 2002, 338, 136. [19] A Geminal Model for the Electronic Structures of Extended Systems, A. Tokmachev, R. Dronskowski, Chem. Phys. 2006, 322, 423. [20] A Theoretical Search for Intermetallic Compounds and Solution Phases in the Binary System Sn/Zn, J. von Appen, K. Hack, R. Dronskowski, J. Alloys Compd. 2004, 379, 110. [21] Tetrasulphur Tetranitride: Phase Transition and Crystal Structure at Elevated Temperature, S. H. Irsen, P. Jacobs, R. Dronskowski, Z. Anorg. Allg. Chem. 2001, 627, 321. [22] Temperature-Dependent Diffraction Studies on the Phase Evolution of Tetraindium Heptabromide, M. Scholten, P. Kölle, R. Dronskowski, J. Solid State Chem. 2003, 174, 349. [23] Hydrogen Bonding in the Crystal Structures of the Ionic Liquid Compounds Butyldimethylimidazolium Hydrogen Sulfate, Chloride and Chloroferrate(II,III), P. Kölle, R. Dronskowski, Inorg. Chem. 2004, 43, 2803. [24] Some A6B5O18 cation-deficient perovskites in the BaO-La2O3-TiO2-Nb2O5 system, H. Zhang, L. Fang, R. Dronskowski, P. Müller, R. Z. Yuan, J. Solid State Chem. 2004, 177, 4007. Selected PublicationsNitrides: Electronic Structure and Bonding in Ce (Nitride) Compounds: Trivalent versus Tetravalent Cerium, G. A. Landrum, R. Dronskowski, R. Niewa, F. J. DiSalvo, Chem. Eur. J. 1999, 5, 515. Theoretical calculations on the structures, electronic and magnetic properties of binary 3d transition metal nitrides, B. Eck, R. Dronskowski, M. Takahashi, S. Kikkawa, J. Mater. Chem. 1999, 9, 1527. Why is Nitrogen so Different? Structure, Bonding and Magnetic Properties of some Model Nitrides, Carbides and Phosphides, G. A. Landrum, B. Eck, R. Dronskowski, Mater. Sci. Forum 2000, 325/6, 105. First-Principles Studies of Extended Nitride Materials, P. Kroll, B. Eck, R. Dronskowski, Adv. Mater. 2000, 12, 307. Predicting new ferromagnetic nitrides from electronic structure theory: IrFe3N and RhFe3N, J. von Appen, R. Dronskowski Angew. Chem. Int. Ed. 2005, 43, 1205. Mysterious Platinum Nitride, J. von Appen, M.-W. Lumey, R. Dronskowski, Angew. Chem. Int. Ed. 2006, 45, 4365. Oxynitrides: The Electronic Structure of Tantalum Oxynitride and the Falsification of a-TaON, M.-W. Lumey, R. Dronskowski, Z. Anorg. Allg. Chem. 2003, 629, 2173. Composition and formation mechanism of zirconium oxynitride films produced by reactive direct current magnetron sputtering, J. M. Ngaruiya, O. Kappertz, C. Liesch, P. Müller, R. Dronskowski, M. Wuttig, Phys. Stat. Sol. A 2004, 201, 967. Quantum-Chemical Studies on the Geometric and Electronic Structures of Bertholloide Cobalt Oxynitrides, M.-W. Lumey, R. Dronskowski, Adv. Funct. Mat. 2004, 14, 371. First-Principles Electronic Structure, Chemical Bonding and High-Pressure Phase Prediction of the Oxynitrides of Vanadium, Niobium and Tantalum, M-W. Lumey, R. Dronskowski Z. Anorg. Allg. Chem. 2005, 631, 887. A density-functional and molecular-dynamics study on the physical properties of yttrium-doped tantalum oxynitride, H. Wolff, H. Schilling, M. Lerch, R. Dronskowski, J. Solid State Chem. 2006, 179, 2265. Metastable Solids: Chemical Bonding of the Binary Indium Bromides, R. Dronskowski, Inorg. Chem. 1994, 33, 6201. Synthesis, Structure, and Decay of In4Br7, R. Dronskowski, Angew. Chem. Int. Ed. Engl. 1995, 34, 1126. In3Ti2Br9: Jahn Teller Unstable Indium(I) and Antiferromagnetically Coupled Titanium(III) Atoms, R. Dronskowski, Chem. Eur. J. 1995, 1, 118. The Crystal Structure of In7Br9, R. Dronskowski, Z. Kristallogr. 1995, 210, 920. Synthesis, Crystal Structure, Electronic Structure, and Magnetic Properties of In2ThBr6, R. Dronskowski, Inorg. Chem. 1995, 34, 4991. InCaBr3, an electron absorbent material containing univalent indium, M. Scholten, R. Dronskowski, C. R. Acad. Sci. Paris (IIb) 1996, 322, 699. InCrBr3: A Ternary Indium Bromide Containing Jahn-Teller Unstable Cr2+ and the Magnetic Structures of InCrBr3 and InFeBr3, M. Scholten, R. Dronskowski, H. Jacobs, Inorg. Chem. 1999, 38, 2614. Temperature-Dependent Diffraction Studies on the Phase Evolution of Tetraindium Heptrabromide, M. Scholten, P. Kölle, R. Dronskowski, J. Solid State Chem. 2003, 174, 349. Solid-State Carbodiimides and Cyanamides: In2.24(NCN)3 and NaIn(NCN)2: Synthesis and Crystal Structures of New Main Group Metal Cyanamides, R. Dronskowski, Z. Naturforsch. B 1995, 50, 1245. Crystal Structure Refinement of Lead Cyanamide and the Stiffness of the Cyanamide Anion, X. Liu, A. Decker, D. Schmitz, R. Dronskowski, Z. Anorg. Allg. Chem. 2000, 626, 103. Synthesis, Structure Determination, and Quantum-Chemical Characterization of an Alternate HgNCN Polymorph, X. Liu, P. Müller, P. Kroll, R. Dronskowski, Inorg. Chem. 2002, 41, 4259. Mercury Cyanamide/Carbodiimide Networks: Synthesis and Crystal Structures of Hg2(NCN)Cl2 and Hg3(NCN)2Cl2, X. Liu, R. Dronskowski, Z. Naturforsch. B 2002, 57, 1108. Experimental and Quantum-Chemical Studies on the Thermochemical Stabilities of Mercury Carbodiimide and Mercury Cyanamide, X. Liu, P. Müller, P. Kroll, R. Dronskowski, W. Wilsmann, R. Conradt, ChemPhysChem 2003, 4, 725. Formation of Complex Three- and One-Dimensional Interpenetrating Networks within Carbodiimide Chemistry: NCN2--Coordinated Rare-Earth-Metal Tetrahedra and Condensed Alkali-Metal Iodide Octahedra in Two Novel Lithium Europium Carbodiimide Iodides, LiEu2(NCN)I3 and LiEu4(NCN)3I3, W. Liao, C. Hu, R. K. Kremer, R. Dronskowski, Inorg. Chem. 2004, 43, 5884. LiSr2(NCN)I3: the first empty tetrahedral strontium(II) entity coordinated by carbodiimide units but without strontium-strontium bonding, W. Liao, J. von Appen, R. Dronskowski, Chem. Commun. 2004, 2302. Carbodiimides with Extended Structures by an Azide-Cyanide Route: Synthesis and Crystal Structure of M2Cl2NCN (M = Eu and Sr), W. Liao, R. Dronskowski, Z. Anorg. Allg. Chem. 2005, 631, 496. Synthesis and crystal structure of ammine copper(I) cyanamide, Cu4(NCN)2NH3, X. Liu, P. Müller, R. Dronskowski Z. Anorg. Allg. Chem. 2005, 631, 1071. A theoretical study on the existence and structures of some hypothetical first-row transition-metal M(NCN) compounds, M. Launay, R. Dronskowski, Z. Naturforsch. B 2005, 60, 701. Synthesis, Crystal Structure and Properties of MnNCN, the first Carbodiimide of a Magnetic Transition Metal, X. Liu, M. Krott, P. Müller, C. Hu, H. Lueken, R. Dronskowski, Inorg. Chem. 2005, 44, 3001. A Novel Method for Synthesizing Crystalline Copper Carbodiimide, CuNCN. Structure Determination by X-ray Rietveld Refinement, X. Liu, M. A. Wankeu, H. Lueken, R. Dronskowski, Z. Naturforsch. B 2005, 60, 593. Intermetallic Compounds: Synthesis, Crystal Structure, Electronic Structure, and Properties of Hf2In5, a Metallic Hafnide with One-Dimensional Hf-Hf and Two-Dimensional In-In Bonding, R. Pöttgen, R. Dronskowski, Chem. Eur. J. 1996, 2, 800. Structure and Properties of Zr2Ni2In and Zr2Ni2Sn, R. Pöttgen, R. Dronskowski, J. Solid State Chem. 1997, 128, 289. Structure, Chemical Bonding, Magnetic Susceptibility, and 155Gd Mößbauer Spectroscopy of the Antiferromagnets GdAgGe, GdAuGe, GdAu0.44(1)In1.56(1), and GdAuIn, R. Pöttgen, G. Kotzyba, E. A. Görlich, K. Latka, R. Dronskowski, J. Solid State Chem. 1998, 141, 352. Synthesis, Structure, Chemical Bonding, and Properties of CaTIn2 (T = Pd, Pt, Au), R.-D. Hoffmann, R. Pöttgen, G. A. Landrum, R. Dronskowski, B. Künnen, G. Kotzyba, Z. Anorg. Allg. Chem. 1999, 625, 789. Structure, Chemical Bonding, and Properties of ZrIn2, IrIn2, and Ti3Rh2In3, M. F. Zumdick, G. A. Landrum, R. Dronskowski, R.-D. Hoffmann, R. Pöttgen, J. Solid State Chem. 2000, 150, 19. Metallic Behavior of the Zintl Phase EuGe2: Combined Structural Studies, Property Measurements and Electronic Structure Calculations, S. Bobev, E. D. Bauer, J. D. Thompson, J. L. Sarrao, G. J. Miller, B. Eck, R. Dronskowski, J. Solid State Chem. 2004, 177, 3545. Synthesis, Structure and Properties of the New Rare-Earth Zintl Phase Yb11GaSb9, S. Bobev, V. Fritsch, J. D. Thompson, J. L. Sarrao, B. Eck, R. Dronskowski, S. M. Kauzlarich, J. Solid State Chem. 2005, 178, 1071. Synthesis, crystal-structure determination and Fe/Rh site preference in the new ternary boride FeRh6B3, B. P. T. Fokwa, R. Dronskowski, Z. Anorg. Allg. Chem. 2005, 631, 2478. Unusual Mn-Mn Spin Coupling in the Polar Intermetallic Compounds CaMn2Sb2 and SrMn2Sb2, S. Bobev, J. Merz, A. Lima, V. Fritsch, J. D. Thompson, J. L. Sarrao, M. Gillessen, R. Dronskowski, Inorg. Chem. 2006, 45, 4047. Metal-Rich Cluster Compounds: PbMo5O8 and Tl0.8Sn0.6Mo7O11, Novel Clusters of Molybdenum and Thallium, R. Dronskowski, A. Simon, Angew. Chem. Int. Ed. Engl. 1989, 28, 758. Synthesis and Crystal Structure of PbMo5O8, a Reduced Oxomolybdate with Mo10O28 Double Octahedra, R. Dronskowski, A. Simon, W. Mertin, Z. Anorg. Allg. Chem. 1991, 602, 49. Synthesis and Crystal Structure of Tl0.8Sn0.6Mo7O11. Mo14O34 Clusters Containing Three Condensed Mo6 Octahedra, R. Dronskowski, A. Simon, Acta Chem. Scand. 1991, 45, 850. On the Crystal Structure of In3Mo11O17 and the Physical Properties of Oligomeric Oxomolybdates, R. Dronskowski, Hj. Mattausch, A. Simon, Z. Anorg. Allg. Chem. 1993, 619, 1397. Superconductivity in Intercalated and Substituted Y2Br2C2, M. Bäcker, A. Simon, Hj. Mattausch, R. Dronskowski, J. Rouxel, Angew. Chem. Int. Ed. Engl. 1996, 35, 752. La9Br5(CBC)3: A New Superconductor, Hj. Mattausch, A. Simon, C. Felser, R. Dronskowski, Angew. Chem. Int. Ed. Engl. 1996, 35, 1685. Quantum Chemistry of the Reactivity of Solids: Theoretical Increments and Indices for Reactivity, Acidity, and Basicity within Solid-State Materials, R. Dronskowski, J. Am. Chem. Soc. 1992, 114, 7230. Bond Reactivities, Acidities, and Basicities within AMo3X3 Phases (A = Li, Na, K, In; X = Se, Te), R. Dronskowski, R. Hoffmann, Inorg. Chem. 1992, 31, 3107. A Theoretical Way of Aiding the Design of Solid-State Syntheses, R. Dronskowski, R. Hoffmann, Adv. Mater. 1992, 4, 514. Reactivity and Acidity of Li in LiAlO2 phases, R. Dronskowski, Inorg. Chem. 1993, 32, 1. Quantum Chemistry of Itinerant Ferro- and Antiferromagnetism: Ferromagnetism in Transition Metals: A Chemical Bonding Approach, G. A. Landrum, R. Dronskowski, Angew. Chem. Int. Ed. 1999, 38, 1389. The Orbital Origins of Magnetism: From Atoms to Molecules to Ferromagnetic Alloys, G. A. Landrum, R. Dronskowski, Angew. Chem. Int. Ed. 2000, 39, 1560. Itinerant Ferromagnetism and Antiferromagnetism from a Chemical Bonding Perspective, R. Dronskowski, Adv. Solid State Phys. 2002, 42, 433. Chemically Tuning between Ferromagnetism and Antiferromagnetism by Combining Theory and Synthesis in Iron/Manganese Rhodium Borides, R. Dronskowski, K. Korczak, H. Lueken, W. Jung, Angew. Chem. Int. Ed. 2002, 41, 2528. Electronic Structure, Chemical Bonding, and Spin Polarization in Ferromagnetic MnAl, Y. Kurtulus, R. Dronskowski, J. Solid State Chem. 2003, 176, 390. Electronic structure and magnetic exchange coupling in ferromagnetic full Heusler alloys, Y. Kurtulus, R. Dronskowski, G. D. Samolyuk, V. P. Antropov, Phys. Rev. B 2005, 71, 14425-1. Electronic Structure, Chemical Bonding and Finite-Temperature Magnetic Properties of full Heusler Alloys, Y. Kurtulus, M. Gillessen, R. Dronskowski, J. Comput. Chem. 2006, 27, 90. General Quantum Chemistry of the Solid State: Crystal Orbital Hamilton Populations (COHP). Energy-Resolved Visualization of Chemical Bonding in Solids Based on Density-Functional Calculations, R. Dronskowski, P. E. Blöchl, J. Phys. Chem. 1993, 97, 8617. Structural and Electronic Peierls Distortions in the Elements (A): The Crystal Structure of Tellurium, A. Decker, G. A. Landrum, R. Dronskowski, Z. Anorg. Allg. Chem. 2002, 628, 295. Structural and Electronic Peierls Distortions in the Elements (B): The Antiferromagnetism of Chromium, A. Decker, G. A. Landrum, R. Dronskowski, Z. Anorg. Allg. Chem. 2002, 628, 303. A Theoretical Search for Intermetallic Compounds and Solution Phases in the Binary System Sn/Zn, J. von Appen, K. Hack, R. Dronskowski, J. Alloys Compd. 2004, 379, 110. Group Functions for the Analysis of the Electronic Structures of Polymers, A. Tokmachev, R. Dronskowski, Phys. Rev. B 2005, 71, 195202. A Geminal Model for the Electronic Structures of Extended Systems, A. Tokmachev, R. Dronskowski, Chem. Phys. 2006, 322, 423. Pathological Biomineralization: Relation of aortic valve calcification with cardiovascular risk factors and anti inflammatory gene polymorphism in patients with degenerative calcific aortic stenosis, J. R. Ortlepp, F. Schmitz, V. Mevissen, S. Weiss, R. Dronskowski, K. Zerres, C. Weber, R. Autschbach, B. Messmer, P. Hanrath, R. Hoffmann, J. Am. Coll. Cardiol. 2003, 41, 507A. The amount of calcium-deficient hexagonal hydroxyapatite in aortic valves is influenced by gender and associated with genetic polymorphisms in patients with severe calcific aortic stenosis, J. R. Ortlepp, F. Schmitz, V. Mevissen, S. Weiss, J. Huster, R. Dronskowski, G. Langebartels, R. Autschbach, K. Zerres, C. Weber, P. Hanrath, R. Hoffmann, Eur. Heart. J. 2004, 25, 514. Chemical analyses and X-ray diffraction investigations of human hydroxyapatite minerals from aortic valve stenoses, L. Stork, P. Müller, R. Dronskowski, J. R. Ortlepp, Z. Kristallogr. 2005, 220, 201. Crystallography of Ionic Liquids: Synthesis, Crystal Structures and Electrical Conductivities of the Ionic Liquid Compounds Butyldimethylimidazolium Tetrafluoroborate, Hexafluorophosphate and Hexafluoroantimonate, P. Kölle, R. Dronskowski, Eur. J. Inorg. Chem. 2004, 2313 & 2989. Hydrogen Bonding in the Crystal Structures of the Ionic Liquid Compounds Butyldimethylimidazolium Hydrogen Sulfate, Chloride and Chloroferrate(II,III), P. Kölle, R. Dronskowski, Inorg. Chem. 2004, 43, 2803. Electronic Materials: Preparation, structure and dielectric properties of Ba4LaMNb3O15 (M = Ti, Sn) ceramics, L. Fang, H. Zhang, T. H. Huang, R. Z. Yuan, R. Dronskowski, Mater. Res. Bull. 2004, 39, 1649. Preparation, characterization and dielectric properties of Ba3M0.33Ta4.67O15 (M = Zn, Ni) ceramics, H. Zhang, L. Fang, T. H. Huang, R. Z. Yuan, R. Dronskowski, J. Mater. Sci.: Mater. Electron. 2004, 15, 695. Characterization and dielectric properties of Sr4La2Ti4M6O30 (M = Nb, Ta) ceramics, L. Fang, H. Zhang, R. Z. Yuan, R. Dronskowski, J. Mater. Sci.: Mater. Electron. 2004, 15, 699. Preparation and characterization of two new dielectric ceramics Ba4NdTiNb3O15 and Ba3Nd2Ti2Nb2O15, L. Fang, C. L. Diao, H. Zhang, R. Z. Yuan, R. Dronskowski, H. X. Liu, J. Mater. Sci.: Mater. Electron. 2004, 15, 803. Some A6B5O18 cation-deficient perovskites in the BaO - La2O3 - TiO2 - Nb2O5 system, H. Zhang, L. Fang, R. Dronskowski, P. Müller, R. Z. Yuan, J. Solid State Chem. 2004, 177, 4007. Synthesis, characterization and dielectric properties of a new cation-deficient perovskite Ba4La2Ti3Nb2O18, L. Fang, H. Zhang, R. Z. Yuan, R. Dronskowski, J. Mater. Sci. 2004, 39, 7093. Preparation and Characterization of New Dielectric Ceramics Ba5LnTi2Nb3O18 (Ln = La, Nd), L. Fang, H. Zhang, L. Chen, R. Z. Yuan, R. Dronskowski, J. Mater. Sci.: Mater. Electron. 2005, 16, 43. Powder Diffraction of Coordination Solids: Alkali-Metal Compounds of Hydroquinone: Synthesis and Crystal Structure, U. Couhorn, R. Dronskowski, Z. Anorg. Allg. Chem. 2003, 629, 647. Alkali-Metal ortho-Hydroxyphenolates: Syntheses and Crystal Structures from Powder X-Ray Diffraction, U. Couhorn, R. Dronskowski, Z. Anorg. Allg. Chem. 2003, 629, 2554. Alkali-Metal meta-Hydroxyphenolates: Syntheses and Crystal Structures from Powder X-Ray Diffraction, U. Couhorn, R. Dronskowski, Z. Anorg. Allg. Chem. 2004, 630, 427. Simulation of Very Large (Nano) Systems: Chemical Reactions within Fe/AlN Layered Nanocomposites: A Simulation Study based on Crystal-Chemical Atomic Dynamics, R. Dronskowski, B. Eck, S. Kikkawa, Jpn. J. Appl. Phys. 2000, 39, 3326. Atomistic simulations of solid-state materials based on crystal-chemical potential concepts: basic ideas and implementation, B. Eck, R. Dronskowski, J. Alloys Compd. 2002, 338, 136. Atomistic simulations of solid-state materials based on crystal-chemical potential concepts: applications for compounds, metals, alloys, and chemical reactions, B. Eck, Y. Kurtulus, W. Offermanns, R. Dronskowski, J. Alloys Compd. 2002, 338, 142. Crystal Chemistry of Energy-Rich Molecules: The Crystal Structure of Mn2O7, A. Simon, R. Dronskowski, B. Krebs, B. Hettich, Angew. Chem. Int. Ed. Engl. 1987, 26, 139. The Crystal and Molecular Structure of Manganese(VII) Oxide, R. Dronskowski, B. Krebs, A. Simon, G. Miller, B. Hettich, Z. Anorg. Allg. Chem. 1988, 558, 7. Tetrasulphur Tetranitride: Phase Transition and Crystal Structure at Elevated Temperature, S. H. Irsen, P. Jacobs, R. Dronskowski, Z. Anorg. Allg. Chem. 2001, 627, 321. Synthesis and X-Ray Crystal Structure Determination of Thiotrithiazyl Iododichloride, S4N3Cl2, S. H. Irsen, R. Dronskowski, Z. Naturforsch. B 2002, 57, 1387. Miscellaneous: Copper Extraction from TlCu3S2 A Neutron Diffraction and Electronic Structure Calculation Study, R. Berger, R. Dronskowski, L. Norén, J. Solid State Chem. 1994, 112, 120. The Little Maghemite Story: A Classic Functional Material, R. Dronskowski, Adv. Funct. Mater. 2001, 11, 27. Magnetic and electronic structure of TlCo2S2, S. Ronneteg, M.-W. Lumey, R. Dronskowski, U. Gelius, R. Berger, S. Felton, P. Nordblad, J. Solid State Chem. 2004, 177, 2977. |